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Summary of Exascale Position

Many applications of interest to DOE involve very large simulations of systems modeled by time
dependent partial differential equations. Current time discretization methods face considerable
challenges at extreme scales: the time dimension does not parallelize well; global time steps are
driven by only a few components; traditional implicit discretizations, and the synchronization at
the end of each time step, create global dependencies; and failure of one node stalls the entire
simulation.

At the same time, the nature of time-stepping methods presents unique and untapped math-
ematical opportunities for achieving high end scalability and resiliency. Detection and correction
of errors across the system for various high performance computing architectures can be handled
algorithmically within the framework of various long time-stepping methods with minimal over-
head due to existing parity of information, namely, the previous, current, and intermediate (stage)
simulation states.

Highly Scalable Time Discretizations

Traditional time stepping methods advance the entire simulation using a serial global-time step.
This leads to serious limitations of parallelism at the exascale. The size of the global time steps is
driven by the fastest varying components of the system, which can be unnecessarily small for the
slower varying components, therefore wasting computational resources. Second, a global barrier-
like synchronization of the entire simulation is required at the end of each (macro)step/stage,
which may lead to considerable data dependencies among different tasks, as well as to severe load
imbalances. Moreover at the exascale latency and energy demand becoming a major limiting factors
and concerns. Fully-implicit (FI) methods have demonstrated the ability to converge multi-physics,
multi-scale nonlinear application at current computational scale [15, 16] and will belong to suite of
time stepping methods that must be advance in order to prepare for the exascale.

Parallel in time methods can take advantage of the computational resources to perform inde-
pendent calculations in order to enhance the robustness of the integration algorithm by improving
the resiliency [13] stability and accuracy [12, 40, 44]. Currently, parallelism in the time-stepping
algorithms at the time discretization level has been mainly explored in the context of multistep
[50] and multistage methods [6, 17, 24, 25, 49, 51]. However, resiliency has not been addressed in
the context of the studies mentioned and implementation is limited [25], several research activities
must be conducted to expose more levels of parallelism while limiting communication in order to
reach the exascale.

Asynchronous multirate time stepping takes different time steps for different components to
achieve a global target accuracy. Early efforts to develop multirate RK methods are due to Rice [42]
and Andrus [1, 2]. Multirate versions of many of the traditional time stepping schemes have been
proposed, including linear multistep [18, 27], extrapolation [12, 44], RK [19, 28, 29], Rosenbrock-
Wanner [4, 20], waveform relaxation [31, 43], Galerkin [33–35], and combined multiscale [11] ap-

1



proaches. In addition, the multirate approach can be extended to exponential integrators which
have been recently developed as efficient alternatives to explicit and implicit methods for large
stiff systems of differential equations [21, 22, 32, 47, 48]. Building asynchronicity into multirate
timesteping will produce additional levels of parallelism and provide insights on how to limit com-
munication and build in algorithmic resiliency.

Furthermore, Arbitrary DErivative Riemann (ADER) temporal discretizations provide an ac-
curate, flexible, and efficient framework for high-order-accurate, single-stage, explicit time-stepping
for the solution of PDEs. Single-stage methods are advantageous in massively parallel environ-
ments by clustering computation and reducing data transfer frequency compared to multi-stage
methods. The ADER method [46] uses the definition of the PDE and provided spatial derivatives
to construct space-time derivatives to any desired order. These derivatives can be computed effi-
ciently using Differential Transforms (DTs) [38, 39]. Computing space-time derivatives only once
per cell, saving DTs of flux and source terms, and expanding space-time Taylor series of each PDE
term mean sampling and averaging are always performed on polynomials. This can be done ana-
lytically, removing the need for quadrature. Polynomial evaluation and integration as well as DT
computations contain fine-grained, data-parallel structures that may be exploited on accelerated
architectures such as GPUs. Finally, ADER methods using DTs are very easily adapted to any
order of accuracy, any spatial operator, and any mesh. In conjunction with a multi-moment finite-
volume operator, ADER efficiently operates at extremely large time steps, epitomizing the current
push toward communication avoidance in parallel.

Algorithmic Fault Tolerance and Resiliency

Exascale computing systems are expected to have processor cores, memory units, communications
and other components totaling in the numbers of millions [10], and computations that run on these
systems for a few hours are likely to experience failures of several components, and possibly compos-
ite failures that cannot always be predicted and accounted for in advance. Methods for achieving
robust computations using failure-prone computing systems have been developed in several cases
[41]. Von Neumann [52] studied the mathematical aspects of building reliable computing systems
from unreliable components in the 50s, and related works establish that robust computations can be
achieved by using inherently failure-prone systems. In practice, computations in space vehicles are
enhanced with Software-Implemented Hardware Fault Tolerance (SIHFT) methods to counteract
the transient faults due to radiation exposure [14]. These studies show that it is indeed possible to
achieve robust computations in production systems in some of the most challenging, failure-prone
environments. A wide spectrum of analytical methods and deployed systems exist [3, 7], ranging
from processor design [45], to programs that check their work [5], to methods specific to MPI
[9, 36, 54], to process migration [53] (to name a few).

In addition to utilizing designs mentioned above, developing algorithmically resilient time inte-
grators in an exascale environment will require run time performance measures to adapt computa-
tional structures, such as time windows subdomains etc. to the current state of the computational
system. A simulation model of the given architecture can be used to emulate performance effects of
work and data distribution policies on proposed time stepping algorithms on future architectures.
A variety of tools is readily available (e.g., [8, 23, 26, 37]), consisting of a combination of discrete
event simulators (DES) for the performance of each node and the communication times as well as
linear programming tools for optimization. However this modeling for the exascale will be expen-
sive to run but even more expensive to maintain. Hence, there has been a large research effort in
recent years to develop scalable aggregate, continuous descriptions of these DES (a review is given
in [30]). Runtime performance measurements on new architectures are needed to manage faulty
environments.
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